Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations July-2021 FORMAL LANGUAGES AND AUTOMATA THEORY

			FORMAL LANGUAGES AND AUTOMATA THEORY		
			(Common to CSE & CSIT)		
Ti	Time: 3 hours Max. M			arks: 60	
			(Answer all Five Units $5 \times 12 = 60$ Marks)		
			UNIT-I		
	1	a	Define Grammar. Construct the Grammar for the language a ⁿ b ⁿ , n>0.	L3	6M
			Compare DFA and NFA.	L2	6M
			OR		
	2	a	Contrast Mealy machine and Moore machine.	L4	6M
		b	Analyze and explain with example Chomsky Hierarchy.	L4	6M
			UNIT-II		
	3	a	Construct an equivalent FA for the given regular expression	L3	6M
			(0+1)*(00+11)(0+1)*.		
		b	From the identities of RE, prove that:	L3	6M
			i) 10+(1010)*[^+(1010)*]=10+(1010)*		
			ii) (1+100*)+(1+100*)(0+10*)(0+10*)=10*(0+10*)*.		
			OR		
	4	a	Convert the given RG to FA.	L3	6M
			$S \rightarrow aA/bB/a/b$		
			A-> aS/bB/b		
			B->aA/Bs		
		b	Construct an equivalent FA for the given regular expression.	L6	6M
			10 + (0 + 11) 0* 1		
			UNIT-III		
	5	a	Define Ambiguous grammar with an example.	L1	6M
		b	Perform left factor for the grammar A→abB/aB/cdg/cdeB/cdfB.	L3	6M
			OR		
	6	a	Write the process adapted to convert the grammar into CNF?	L2	6M
		b	Convert the following grammar into CNF.	L3	6M
			$S \rightarrow bA/aB$		
			A→bAA/aS/a		
			B→aBB/bS/a.		
			UNIT-IV		
	7	a	State Push Down Automata.	L1	6M
		b	Construct a NPDA to accept the language $L=\{WW^R / W \in (a,b)^* \}$ by empty	L6	6M
			stack and final state.		
			OR		
	8	a	Define Instantaneous description (ID) in PDA.	L1	6M
		b	Define push down automata? Explain acceptance of PDA with final state.	L2	6M

Q.P. Code: 19CS0509	R19		
9 a Describe Instantaneous Description of Turing Machine. b Explain about the graphical notation of TM.	L2 L3	6M 6M	
OR 10 a Explain the procedure adapted to convert RE to TM.	L2	6M	
b Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM.	L3	6M	

*** END ***